ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A1-F04
会議情報

不確実性を伴う物体操作を実現する動作生成手法
人生活支援を実現するマルチタスク型ロボットの開発(4)
*伊藤 洋小谷 俊貴一藁 秀行
著者情報
会議録・要旨集 認証あり

詳細
抄録

One of the challenging issues in robotics is dealing with uncertainty. In this research, we propose a method for robust motion generation in unlearned environments, including extrapolation, by introducing Bayesians to conventional deterministic RNNs. The proposed method learns a probabilistic model from training data and generates situation-specific behaviors from the learned probabilistic model. We confirmed that the proposed method can robustly execute tasks even in unlearned environments by using a robot simulator. Furthermore, we show that the Recurrent Dropout can be used to reduce the dependence of the initial weights of neurons on generalization performance.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top