Journal of Smooth Muscle Research
Online ISSN : 1884-8796
Print ISSN : 0916-8737
ISSN-L : 0916-8737
Invited Review
Advances in malignant hyperthermia: novel insights into heat-induced Ca2+ release as a thermal signaling
Toshiko YamazawaKotaro OyamaMadoka Suzuki
Author information
JOURNAL OPEN ACCESS

2025 Volume 61 Pages 65-74

Details
Abstract

Thermoregulation is essential for maintaining homeostasis in mammals under various environmental conditions. Impairment of this function can result in severe conditions, such as fever, heat stroke, and malignant hyperthermia (MH). In this review, we will focus on the role of the type 1 ryanodine receptor (RYR1), a Ca2+ release channel that is crucial for excitation-contraction coupling in skeletal muscles. Mutations in RYR1 are associated with muscle disorders, including MH, which is characterized by dysregulated Ca2+-induced Ca2+ release (CICR). Recent advances from genetically engineered mouse models of MH have provided new insights into the pathophysiological mechanisms underlying anesthetic- and heat-induced episodes, and revealed a heat-induced Ca2+ release (HICR) mechanism mediated by RYR1. Experimental evidences demonstrate that anesthetics induce simultaneous increases in cellular temperature and cytosolic Ca2+ concentration. Therefore, this review proposes that an increase in cellular temperature triggers further Ca2+ release via HICR, establishing a positive feedback loop that sustains excessive heat production during MH crises.

Content from these authors

この記事はクリエイティブ・コモンズ [表示 - 非営利 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc/4.0/deed.ja
Previous article Next article
feedback
Top