Journal of Smooth Muscle Research
Online ISSN : 1884-8796
Print ISSN : 0916-8737
ISSN-L : 0916-8737
Current issue
Displaying 1-3 of 3 articles from this issue
Original
  • Yasuyuki Naraki, Masaru Watanabe
    2025 Volume 61 Pages 1-10
    Published: 2025
    Released on J-STAGE: February 20, 2025
    JOURNAL FREE ACCESS

    Smooth muscle relaxation after contraction is thought to reflect “latch-like” slow cycling bridge formation and deformation. However, how actin-myosin interaction contributes to the transfer from fast-cycling cross bridges to slow-cycling bridges is still unclear. The thiadiazinone compound EMD57033 is known to bind to an allosteric pocket in the myosin motor domain and to increase basal and actin-activated myosin ATPase activity and contractile force in striated muscles. Therefore, we investigated whether EMD57033 affected the relaxation process after Ca2+ removal by affecting slow cycling bridge formation and/or deformation in β-escin skinned (cell membrane-permeabilized) carotid artery and taenia cecum from guinea pigs. EMD57033 at ≥30 µM decreased the force decay during relaxation in both the skinned carotid artery and taenia cecum, irrespective of the presence of ATP. A kinetic analysis in the present study indicated that EMD57033 significantly prolonged τslow-detach, a time constant of detachment of the slow cycling bridge, in both the skinned carotid artery and taenia cecum, irrespective of the presence of nucleoside triphosphates (ATP or ITP). Further studies are necessary to elucidate how EMD57033 modulates the smooth muscle myosin (SMM) structure, SMM activity, and thick filament organization, affecting slow cycling bridge formation and deformation, although EMD57033 might change slow cycling bridge formation, resulting in both cycling rate modulation and an increase in the affinity of SMM to actin.

    Download PDF (1178K)
Invited Review
  • Noriaki Manabe, Masafumi Wada, Tsutomu Takeda, Emiko Bukeo, Hirotaka T ...
    2025 Volume 61 Pages 11-19
    Published: 2025
    Released on J-STAGE: February 08, 2025
    JOURNAL FREE ACCESS

    A number of factors have been recently associated with the development of disorders of gut-brain interaction (DGBI), including genetic predisposition, early-life environment, intestinal microbiota, infection, microinflammation, and increased mucosal permeability. In addition, impaired gastrointestinal motility is important not only as a cause of DGBI but also as a consequent final phenotype. Gastrointestinal motor measurements are the predominant method for the assessment of and therapeutic intervention into motor abnormalities. As such, these measurements should be considered for DGBI patients who do not respond to first-line approaches such as behavioral therapy, dietary modifications, and pharmacotherapy. This comprehensive review focuses on the functional changes in the upper gastrointestinal tract caused by DGBI and describes ongoing attempts to develop imaging modalities to assess these dysfunctions in the esophageal and gastric regions. Recent advances in imaging techniques could help elucidate the pathophysiology of DGBI, with exciting potential for research and clinical practice.

    Download PDF (1448K)
Review
  • Chikashi Shibata, Kentaro Sawada, Atsushi Mitamura, Toru Nakano
    2025 Volume 61 Pages 20-28
    Published: 2025
    Released on J-STAGE: February 07, 2025
    JOURNAL FREE ACCESS

    Distal gastrectomy is the most frequently performed procedure for gastric cancer. Gastric emptying after distal gastrectomy is generally considered to be accelerated due to resection of the antrum, pylorus, and duodenal bulb. Food residue, however, is frequently observed in the gastric remnant in patients after distal gastrectomy at the time of endoscopy after routine overnight fasting. This observation suggests delayed gastric emptying and conflicts with the general understanding of accelerated gastric emptying after distal gastrectomy. We searched for reports that evaluated the separate gastric emptying of liquids and solids with scintigraphy after distal gastrectomy in humans and also addressed the physiologic changes in gastric emptying after distal gastrectomy. Most all reports showed that gastric emptying of liquids after distal gastrectomy was accelerated compared to healthy controls, especially immediately after feeding. In contrast, some gastric emptying of solids was accelerated early after the meal ingestion, but thereafter emptying of solids remaining in the stomach was delayed beginning about 60 min after the meal in patients after distal gastrectomy. This delayed solid gastric emptying after distal gastrectomy was considered associated with food residue in the remnant stomach. We conclude that gastric emptying after distal gastrectomy was accelerated for liquids and solids soon after the meal ingestion but delayed for solids later than 60 min after the meal ingestion.

    Download PDF (933K)
feedback
Top