知能と情報
Online ISSN : 1881-7203
Print ISSN : 1347-7986
ISSN-L : 1347-7986
原著論文
Listwise Collaborative Filtering with High-Rating-Based Similarity and Simple Missing Value Estimation
Yoshiki TSUCHIYAHajime NOBUHARA
著者情報
ジャーナル オープンアクセス

2019 年 31 巻 1 号 p. 501-507

詳細
抄録

In this paper, we make two proposals. The first aims to accelerate similarity calculations by only using a subset of the rating information (namely the highest ratings), while the second attempts to improve the accuracy of listwise collaborative filtering using a simple missing value estimation process. Experiments using the MovieLens 1M (6,040 users, 3,952 items and 1,000,209 ratings), 10M (71,567 users, 10,681 items and 10,000,054 ratings) and Jester (48,483 users, 100 items and 3,519,448 ratings) datasets demonstrate that these proposals can considerably reduce the computation time (by a factor of up to 50) and improve the normalized discounted cumulative gain value by up to 0.02 compared with ListCF, a well-known listwise collaborative filtering algorithm.

著者関連情報
© 2019 Japan Society for Fuzzy Theory and Intelligent Informatics
前の記事 次の記事
feedback
Top