知能と情報
Online ISSN : 1881-7203
Print ISSN : 1347-7986
ISSN-L : 1347-7986
原著論文
時系列データに対する3種類のサイズコントロールクラスタリング
津田 暢彦濵砂 幸裕遠藤 靖典
著者情報
ジャーナル フリー

2021 年 33 巻 2 号 p. 608-616

詳細
抄録

時系列データとは,時間変化する現象の情報を持つデータであり,その応用範囲は多岐にわたる.大規模複雑な時系列データを分析し,その特徴を抽出するデータ解析手法の1つにクラスタリングがある.時系列データのクラスタリングにおける重要な課題は,適切な非類似度の選択とデータに適したクラスタリングアルゴリズムの選択である.本論文では,時系列データに対するクラスタリング手法にサイズコントロールの考え方を導入することで,不均衡な時系列データを適切に処理する新たなクラスタリング手法を提案する.提案手法は,時系列データに対する代表的な手法である,Dynamic Time Warping(DTW)を非類似度に用いたk-medoids,Shape-based Distance(SBD)を非類似度に用いたk-medoidsおよびk-Shapeのそれぞれを拡張することで構築される.さらに,UCR Time Series Classification Archiveで公開されている12種類のデータセットを用いた数値実験を行い,提案手法の性能を検証した.数値実験から,Dynamic Time Warpingを非類似度に用いたサイズコントロール付きk-medoidsが,提案手法の中で最も良好なクラスタ分割を得ることを確認した.

著者関連情報
© 2021 日本知能情報ファジィ学会
前の記事 次の記事
feedback
Top