Journal of Signal Processing
Online ISSN : 1880-1013
Print ISSN : 1342-6230
ISSN-L : 1342-6230
新たに導いた3 × 3巡回と疑似巡回行列の恒等式を用いてWinograd 9点FFTを導出する新しいアルゴリズム
高橋 宣明鷹合 大輔武部 幹
著者情報
ジャーナル フリー

2021 年 25 巻 1 号 p. 43-51

詳細
抄録

The Winograd small fast Fourier transform (FFT) is a method of efficiently computing the discrete Fourier transform (DFT) for data of small block length. The equations of post-additions, constant multiplication factors, and pre-additions for the Winograd 9-point FFT are given in references [3], [5], [6]. A 6 × 6 block matrix is obtained from 9-point DFT matrix by matrix manipulation. By using the 6 × 6 block matrix, 3 × 3 circular and quasi-circular matrices can be derived. New identical equations for 3 × 3 circular and quasi-circular matrices have been derived by the authors. A new simple algorithm is given for the Winograd 9-point FFT correctly by using new identical equations for 3 × 3 circular and quasi-circular matrices.

著者関連情報
© 2021 信号処理学会
前の記事
feedback
Top