写真測量とリモートセンシング
Online ISSN : 1883-9061
Print ISSN : 0285-5844
ISSN-L : 0285-5844
原著論文
XバンドおよびCバンドSARデータを併用した機械学習アルゴリズムによる作物分類の高精度化・効率化に関する検討
山谷 祐貴薗部 礼小林 伸行望月 貫一郎王 秀峰谷 宏
著者情報
ジャーナル フリー

2020 年 59 巻 6 号 p. 259-274

詳細
抄録

This paper presents a crop classification method using synthetic aperture radar (SAR) satellite data for mapping, in place of existing ground surveys. We used TerraSAR-X X-band dual-polarization data and RADARSAT-2 C-band full-polarization data. Values of the sigma-naught and polarimetric parameters were calculated from each type of data. We assessed the accuracy of classification performed by the random forests machine-learning algorithm. Three results were obtained. First, the classification accuracy was evaluated using RADARSAT-2 data for five scenes. Using nine variables calculated from each scene of RADARSAT-2 data, the overall accuracy exceeded 0.92. Second, the classification accuracy was evaluated using both RADARSAT-2 and TerraSAR-X data for five scenes. Using nine types of variables in the RADARSAT-2 data and four types of variables in the TerraSAR-X data, a significantly higher overall accuracy (over 0.93) was obtained than using only RADARSAT-2 data. This demonstrates the advantage of using SAR data for the two types of bands. Finally, for economic efficiency, the number of SAR scenes used for classification was reduced. The classification accuracy using only three scenes of RADARSAT-2 and TerraSAR-X data was not significantly different from that using five scenes. This shows that classification is efficient without requiring a large quantity of data.

著者関連情報
© 2020 一般社団法人 日本写真測量学会
前の記事
feedback
Top