写真測量とリモートセンシング
Online ISSN : 1883-9061
Print ISSN : 0285-5844
ISSN-L : 0285-5844
研究速報
敵対的生成ネットワークを用いたSentinel-1 C-SARデータのNDVIシミュレーション画像の作成
薗部 礼関 晴之島村 秀樹望月 貫一郎齋藤 元也吉野 邦彦
著者情報
ジャーナル フリー

2022 年 61 巻 2 号 p. 80-87

詳細
抄録

The Normalized Difference Vegetation Index (NDVI) is effective for expressing vegetation status and quantified vegetation attributes. However, optical remote sensing imagery is limited by cloud contamination. On the other hand, synthetic aperture radar (SAR) can work under all weather conditions and overcome this disadvantage of optical remote sensing while it is difficult to recognize the land cover types visually due to the mechanisms of SAR imaging and the speckle noise. In this study, the image-to-image translation methods (pix2pix and CycleGAN) were used to convert Sentinel-1 C-SAR images into Sentinel-2 NDVI images. The results show that the combination of CycleGAN and VH polarization data works well during the growing season of beetroots and the simulated NDVI values were significantly correlated with the real NDVI values.

著者関連情報
© 2022 一般社団法人 日本写真測量学会
前の記事
feedback
Top