The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Original Article
Segment-specific and direction-dependent transport of cadmium and manganese in immortalized S1, S2, and S3 cells derived from mouse kidney proximal tubules
Hitomi FujishiroSatoko HamaoMisaki IsawaSeiichiro Himeno
Author information
JOURNALS FREE ACCESS FULL-TEXT HTML

2019 Volume 44 Issue 9 Pages 611-619

Details
Abstract

The kidney proximal tubule is a target of many renal toxicants, including cadmium (Cd), and also a place of reabsorption of essential metals in glomerular filtrate to systemic circulation. Although the mechanisms of metal transport in the convoluted proximal tubule (S1 and S2 segments) and the straight proximal tubule (S3 segment) may differ, little is known about the segment-specific modes of metal transport. Here, we utilized immortalized cell lines derived from the S1, S2, and S3 segments of mouse kidney proximal tubules, and examined the segment-specific and direction-dependent transport of Cd and manganese (Mn) using a trans-well culture system. The results showed that the uptakes of Cd2+ and Mn2+ from apical sides were the highest in S3 cells, and Cd2+, Mn2+, and Zn2+ mutually inhibited the apical uptake of each metal. As the expression of ZIP8, a zinc transporter having affinities for Cd2+ and Mn2+, was the highest in S3 cells, ZIP8 may contribute largely to the apical uptakes of these metals. The efficient uptake of Mn2+ from apical side of S3 cells may suggest an important role of ZIP8 in proximal tubule in reabsorption of Mn, an essential metal. Our study demonstrated that S1, S2, and S3 cells provide a useful tool for studying the segment-specific and direction-dependent transport of both toxic and essential metals in the kidney’s proximal tubules.

Information related to the author
© 2019 The Japanese Society of Toxicology
Previous article Next article
feedback
Top