The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Letter
Dihydropyrazine induces endoplasmic reticulum stress and inhibits autophagy in HepG2 human hepatoma cells
Shinji TakechiMadoka SawaiYuu Miyauchi
著者情報
ジャーナル フリー HTML

2024 年 49 巻 7 号 p. 313-319

詳細
抄録

Dihydropyrazines (DHPs) are formed by non-enzymatic glycation reactions in vivo and in food. We recently reported that 3-hydro-2,2,5,6-tetramethylpyrazine (DHP-3), which is a methyl-substituted DHP, caused severe oxidative stress and cytotoxicity. However, the molecular mechanisms underlying the cytotoxic pathways of the DHP response remain elusive. Because oxidative stress induces endoplasmic reticulum (ER) stress and autophagy, we investigated the ability of DHP-3 to modulate the ER stress and autophagy pathways. DHP-3 activated the ER stress pathway by increasing inositol-requiring enzyme 1 (IRE1) and PKR-like ER kinase (PERK) phosphorylation and transcription factor 6 (ATF6) expression. Moreover, DHP-3 increased the expression of activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), which are downstream targets of PERK. In addition, DHP-3 inhibited the autophagy pathway by increasing the accumulation of microtubule-associated protein 1 light chain 3 alpha-phosphatidylethanolamine conjugate (LC3-II) and p62/sequestosome 1 (p62), while decreasing autophagic flux. Taken together, these results indicate that DHP-3 activates the ER stress pathway and inhibits the autophagy pathway, suggesting that the resulting removal of damaged organelles is inadequate.

著者関連情報
2024 The Japanese Society of Toxicology
前の記事 次の記事
feedback
Top