Journal of Veterinary Medical Science
Online ISSN : 1347-7439
Print ISSN : 0916-7250
ISSN-L : 0916-7250
Wildlife Science
The functional-morphological adaptive strategy of digestive organs of decapodiform cephalopods
Ayano OMURAHideki ENDO
Author information

2016 Volume 78 Issue 1 Pages 43-47


The digestive organs in decapodiform cephalopod species morphologically vary by individual lifestyle. We examined the following six species of adult decapodiformes cephalopods representing different habitats: Todarodes pacificus, Loligo bleekeri, Loligo edulis, Watasenia scintillans (pelagic), Sepia lycidas and Euprymna morsei (benthic). L. bleekeri and L. edulis possess a bursiform cecal sac connected to the cecum. Pelagic species have a single digestive gland smaller than in benthic species. T. pacificus has an oval digestive gland larger than that of L. bleekeri and L. edulis, which possess withered-looking and smaller digestive glands. In contrast, the digestive glands in benthic species are paired. S. lycidas and E. morsei have well-developed and larger digestive glands than those of the pelagic species. Well-developed digestive duct appendages are found in benthic species. In qualification of the mass of digestive organs, pelagic species have smaller stomachs, digestive glands and digestive ducts’ appendages than benthic species. Because pelagic species need to swim, they may possess smaller stomachs and larger cecums for more rapid digestion. A smaller digestive gland may have the advantage of reducing the body weight in pelagic species for rapid swimming. In contrast, since benthic species require a longer time for digestion than pelagic species, they compact more food in their stomachs and absorb nutrients via more organs, such as the digestive grand and digestive duct appendages, in addition to cecum.

Information related to the author

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
Previous article