Journal of Veterinary Medical Science
Online ISSN : 1347-7439
Print ISSN : 0916-7250
ISSN-L : 0916-7250
Surgery
Alterations in characteristics of canine articular chondrocytes in non-passaged long-term monolayer culture: Matter of differentiation, dedifferentiation and redifferentiation
Ekkapol AKARAPHUTIPORNTakafumi SUNAGAEugene C. BWALYARyosuke ECHIGOMasahiro OKUMURA
著者情報
ジャーナル オープンアクセス

2020 年 82 巻 6 号 p. 793-803

詳細
抄録

This study investigated the effects of culture time on phenotype stability of canine articular chondrocytes (CACs) in non-passaged long-term monolayer culture. Third passage (P3) CACs isolated from four cartilage samples were seeded at three different initial seeding densities (0.2 × 104, 1.0 × 104 and 5.0 × 104 cells/cm2) and maintained in monolayer condition up to 8 weeks without undergoing subculture after confluence. The characteristic changes of chondrocytes during the culture period were evaluated based on the cell morphology, cell proliferation, glycosaminoglycans (GAGs) content, DNA quantification, mRNA expression and ultrastructure of chondrocytes. Chondrocytes maintained under post-confluence condition exhibited a capability to grow and proliferate up to 4 weeks. Alcian blue staining and Dimethylmethylene blue (DMMB) assay revealed that the extracellular matrix (ECM) synthesis was increased in a time-dependent manner from 2 to 8 weeks. The chondrocyte mRNA expression profile was dramatically affected by prolonged culture time, with a significant downregulation of collagen type I, whereas the expression of collagen type II, aggrecan, Sox9 and matrix metalloproteinase 13 (MMP-13) were significantly upregulated. In addition, transmission electron microscopy (TEM) result indicated dilation of rough endoplasmic reticulum (RER) in these long-term monolayer cultured chondrocytes. These findings demonstrate that the chondrocytes phenotype could be partially redifferentiated through the spontaneous redifferentiation process in long-term cultures using standard culture medium without the addition of chondrogenic supplements or tissue-culture scaffolds.

著者関連情報
© 2020 by the Japanese Society of Veterinary Science

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top