Journal of Veterinary Medical Science
Online ISSN : 1347-7439
Print ISSN : 0916-7250
ISSN-L : 0916-7250
Toxicology
Developmental stage-specific exposure and neurotoxicity evaluation of low-dose clothianidin during neuronal circuit formation
Asuka SHODAMidori MURATAMako KIMURAYukako HARASakura YONOICHIYuya ISHIDAYouhei MANTANIToshifumi YOKOYAMATetsushi HIRANOYoshinori IKENAKAYoshiaki TABUCHINobuhiko HOSHI
著者情報
ジャーナル オープンアクセス
電子付録

2023 年 85 巻 4 号 p. 486-496

詳細
抄録

Neonicotinoid pesticides (NN) were recently reported to exhibit adverse effects in higher vertebrates. Moreover, NNs are routinely transferred from mother to offspring, raising concerns about their effects on future generations. The fetal and neonatal periods are the most critical to the formation of neural circuits in the brain through neurogenesis and differentiation, neuronal migration, axon guidance, and synaptogenesis. NN exposure throughout the fetal and neonatal periods was found to affect the neurobehavior of the offspring, but the stage-specific neurobehavioral effects are unclear. We exposed fetal and neonatal mice to a no-observed-adverse-effect level (NOAEL) of clothianidin (CLO) for 4 days during each of four developmental stages: neurite proliferation and differentiation (fetal days 9–12, CLO-1), neurite outgrowth (fetal days 15–18, CLO-2), synapse formation and astrocyte differentiation (days 1–4 after birth, CLO-3), and synapse remodeling (days 11–14 after birth, CLO-4). CLO’s neurobehavioral effects were evaluated in juveniles and adults, revealing that CLO-1 and CLO-2 caused behavioral abnormalities in adult mice. CLO-3 significantly increased locomotor activity and decreased juvenile neurons in the hippocampal dentate gyrus in adulthood. Comprehensive gene analysis of CLO-3 revealed high expression of genes related to neurite outgrowth and axonal branching in the hippocampus in juveniles and adults. These results revealed developmental stage-specific effects of a NOAEL of CLO in the fetal and neonatal periods, suggesting that the susceptibility of the fetus and neonate to CLO varies by developmental stage.

著者関連情報
© 2023 by the Japanese Society of Veterinary Science

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top