抄録
We present a streaming-based technique of volume rendering which breaks a large volume data into pieces (sub-volumes) so as to maintain volume rendering processing in physical memory in consideration of the available system resources. Each sub-volume is transferred to a rendering PC, which performs hardware accelerated volume rendering and generates a partial image (sub-image). The sub-images are piled up in depth order to complete the final image. In the rendering PC, we have used general-purpose consumer PC graphics cards (Geforce4) to our system as a low cost solution for large-scale volume rendering. Furthermore, in order to improve the rendering quality, we use not a plane slice sampling but an iso-distance surface slice sampling. This technique has been applied to remote visualization of 3-D finite element analysis result of 3-D flow through a lateral saccular aneurysm, and its effectiveness is confirmed.