Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Conformal classification of (k, μ)-contact manifolds
Ramesh SharmaLuc Vrancken
著者情報
ジャーナル フリー

2010 年 33 巻 2 号 p. 267-282

詳細
抄録
First we improve a result of Tanno that says "If a conformal vector field on a contact metric manifold M is a strictly infinitesimal contact transformation, then it is an infinitesimal automorphism of M" by waiving the "strictness" in the hypothesis. Next, we prove that a (k, μ)-contact manifold admitting a non-Killing conformal vector field is either Sasakian or has k = –n – 1, μ = 1 in dimension > 3; and Sasakian or flat in dimension 3. In particular, we show that (i) among all compact simply connected (k, μ)-contact manifolds of dimension > 3, only the unit sphere S2n+1 admits a non-Killing conformal vector field, and (ii) a conformal vector field on the unit tangent bundle of a space-form of dimension > 2 is necessarily Killing.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2010 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top