Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Nonexistence of nontrivial quasi-Einstein metrics
Yawei Chu
著者情報
ジャーナル フリー

2012 年 35 巻 2 号 p. 374-381

詳細
抄録
Let (Mn, g, ef dvolg) be a smooth metric measure space of dimension n. In this note, we first prove a nonexistence result for Mn with the Bakry-Émery Ricci tensor is bounded from below. Then we show that fL (Mn, ef dvol) and |∇f| ∈ L (Mn, ef dvol) are equivalent for complete gradient shrinking Ricci solitons. Furthermore, we prove that there is no non-Einstein shrinking soliton when the normalized function $\tilde f$ is non-positive.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2012 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top