Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
On Terai's conjecture
Xin Zhang
著者情報
ジャーナル フリー

2018 年 41 巻 2 号 p. 413-420

詳細
抄録

Let p be an odd prime such that br + 1 = 2pt, where r, t are positive integers and b ≡ 3,5 (mod 8). We show that the Diophantine equation x2 + bm = pn has only the positive integer solution (x,m,n) = (pt-1,r,2t). We also prove that if b is a prime and r = t = 2, then the above equation has only one solution for the case b ≡ 3,5,7 (mod 8) and the case d is not an odd integer greater than 1 if b ≡ 1 (mod 8), where d is the order of prime divisor of ideal (p) in the ideal class group of Q ().

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2018 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top