Kodai Mathematical Journal
Online ISSN : 1881-5472
Print ISSN : 0386-5991
ISSN-L : 0386-5991
Gradient estimates for weighted p-Laplacian equations on Riemannian manifolds with a Sobolev inequality and integral Ricci bounds
L. V. DaiN. T. DungN. D. TuyenL. Zhao
著者情報
ジャーナル 認証あり

2022 年 45 巻 1 号 p. 19-37

詳細
抄録

In this paper, we consider the non-linear general p-Laplacian equation Δp,fu + F(u) = 0 for a smooth function F on smooth metric measure spaces. Assume that a Sobolev inequality holds true on M and an integral Ricci curvature is small, we first prove a local gradient estimate for the equation. Then, as its applications, we prove several Liouville type results on manifolds with lower bounds of Ricci curvature. We also derive new local gradient estimates provided that the integral Ricci curvature is small enough.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2022 Department of Mathematics, Tokyo Institute of Technology
前の記事 次の記事
feedback
Top