KONA Powder and Particle Journal
Online ISSN : 2187-5537
Print ISSN : 0288-4534
ISSN-L : 0288-4534
Original Research Paper
Computational Fluid Dynamics Model of a Swirler Separator for Gas Cleaning
Luis A.C. KlujszoPolycarpe K. SongfackRaj K. RajamaniMenachem Rafaelof
著者情報
ジャーナル オープンアクセス

1999 年 17 巻 p. 147-162

詳細
抄録
This work is concerned with the development of a computational fluid dynamics model for a two-phase, turbulent, swirling flow produced by stationary guide vanes. The swirling flow causes separation of particles in the air stream and hence the device is called swirler separator. The Reynolds-averaged continuity and Navier-Stokes equations are solved along with the Boussinesq hypothesis to describe the stress distribution throughout the flow field in a body-fitted coordinate system. The κ-ε model is used to determine turbulent viscosity. Finite volume methodology is adopted to discretize the system of governing partial differential equations and the semi-implicit method for pressure linked equations consistent to deal with the pressure-velocity coupling. The dilute phase is accounted for by following a Lagrangian methodology in which a Newtonian force balance tracks the particles throughout the flow field. A stochastic method is employed to model the dispersion of particles due to turbulence of the fluid-phase. The phenomenological model is then successfully used to predict velocity and pressure fields created by the guide vanes as well as particle classification curves brought about by the swirler separator.
著者関連情報

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
https://www.kona.or.jp/jp/journal/info.html
https://creativecommons.org/licenses/by/4.0/
前の記事 次の記事
feedback
Top