KONA Powder and Particle Journal
Online ISSN : 2187-5537
Print ISSN : 0288-4534
ISSN-L : 0288-4534
Original Research Papers
Evaluation of a Coating Process for SiO2/TiO2 Composite Particles by Machine Learning Techniques
Taichi KimuraRiko IwamotoMikio YoshidaTatsuya TakahashiShuji SasabeYoshiyuki Shirakawa
著者情報
ジャーナル オープンアクセス HTML
J-STAGE Data

2023 年 40 巻 p. 236-249

詳細
抄録

In this study, in order to optimize a fabrication process for SiO2/TiO2 composite particles and control their coating ratio (CTi), regression models for the coating process were constructed using various machine learning techniques. The composite particles with a core (SiO2)/shell (TiO2) structure were synthesized by mechanical stress under various fabrication conditions with respect to the supply volume of raw materials (V), addition ratio of TiO2 (rTi), operation time (t), rotor rotation speed (S), and temperature (T). Regression models were constructed by the least squares method (LSM), principal component regression (PCR), support vector regression (SVR), and the deep neural network (DNN) method. The accuracy of the constructed regression models was evaluated using the determination coefficients (R2) and the predictive performance was evaluated by comparing the prediction coefficients (Q2). From the perspective of the R2 and Q2 values, the DNN regression model was found to be the most suitable model for the present coating process. Moreover, the effects of the fabrication parameters on CTi were analyzed using the constructed DNN model. The results suggested that the t value was the dominant factor determining CTi of the composite particles, with the plot of CTi versus t displaying a clear maximum.

Fullsize Image
著者関連情報

This article is licensed under a Creative Commons [Attribution 4.0 International] license.
http://www.kona.or.jp/jp/journal/info.html#JournalandEthicsPolicies
https://creativecommons.org/licenses/by/4.0/
前の記事 次の記事
feedback
Top