2020 Volume 67 Issue 2.3 Pages 83-89
Summary: We investigated the molecular basis of factor VII (FVII) deficiency in a Japanese patient and identified compound heterozygous mutations. Factor VII activity and antigen levels in the patient were less than 5.0% and 6.5% of controls, respectively. All exons, exon–intron boundaries, and the 5’ promoter region of F7 from genomic DNA were amplified using polymerase chain reaction (PCR). Sequencing analysis of PCR fragments revealed that the patient was heterozygous for a known T to C substitution at nucleotide position 38, which resulted in the p.Leu13Pro missense mutation (Factor VII Morioka) in the signal peptide region, and a novel mutation in the 5’ promoter region (−58G>C). An electrophoretic mobility shift assay showed that the mutation in the promoter region reduced the binding of hepatocyte nuclear factor (HNF). It is presumed that the reduced binding of HNF-4 to the F7 promoter region reduces F7 transcription and thus reduces the synthesis and expression of FVII.