Kyushu Journal of Mathematics
Online ISSN : 1883-2032
Print ISSN : 1340-6116
ISSN-L : 1340-6116
BEHAVIOR OF CORANK-ONE SINGULAR POINTS ON WAVE FRONTS
Kentaro SAJIMasaaki UMEHARAKotaro YAMADA
著者情報
ジャーナル フリー

2008 年 62 巻 1 号 p. 259-280

詳細
抄録
Let M2 be an oriented 2-manifold and f : M2R3 a C-map. A point pM2 is called a singular point if f is not an immersion at p. The map f is called a front (or wave front), if there exists a unit C-vector field ν such that the image of each tangent vector df (X) (XTM2) is perpendicular to ν, and the pair (f, ν) gives an immersion into R3 × S2. In a previous paper, we gave an intrinsic formulation of wave fronts in R3. In this paper, we investigate the behavior of cuspidal edges near corank-one singular points and establish Gauss-Bonnet-type formulas under the intrinsic formulation.
著者関連情報
© 2008 by Faculty of Mathematics, Kyushu University
前の記事 次の記事
feedback
Top