Mass Spectrometry
Online ISSN : 2186-5116
Print ISSN : 2187-137X
ISSN-L : 2186-5116
Original Article
Size Analysis of Silver and Gold Nanoparticles Using Laser Ablation Single Particle ICP Mass Spectrometry: Evaluation of the Laser-Induced Disintegration of Nanoparticles
Shuji Yamashita Takafumi Hirata
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2023 Volume 12 Issue 1 Pages A0116

Details
Abstract

Single particle inductively coupled plasma mass spectrometry combined with the laser ablation technique (LA-spICP-MS) has been used for the determination of particle size and the spatial distribution of metal nanoparticles (MNPs) in various solid samples such as biological samples and semiconductor materials. In this study, we investigated the effect of the fluence of the laser being used on the disintegration of MNPs. Commercially available MNPs of silver and gold (Ag NPs and Au NPs), the sizes of which were determined by transmission electron microscopy (TEM), were analyzed with LA-spICP-MS. We evaluated the degree of disintegration of the original-sized particles, based on a comparison of the size distributions obtained by LA-spICP-MS and other analytical techniques. The disintegration of both the Ag NPs and Au NPs was induced by a laser ablation process when the laser fluence was higher than 1.0 J cm−2, whereas no disintegration was observed when the fluence was lower than 1.0 J cm−2. Moreover, the mean diameter and standard deviation of the determined diameters obtained by LA-spICP-MS were in good agreement with solution-based spICP-MS and TEM analysis within analytical uncertainty. The data obtained here demonstrates that LA-spICP-MS represents a promising potential analytical technique for accurately determining the size of individual MNPs and their spatial distribution in solid samples.

Content from these authors
© 2023 Shuji Yamashita and Takafumi Hirata. This is an open-access article distributed under the terms of Creative Commons Attribution Non-Commercial 4.0 International License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

This article is licensed under a Creative Commons [Attribution-NonCommercial 4.0 International] license.
https://creativecommons.org/licenses/by-nc/4.0/
Previous article Next article
feedback
Top