Mass Spectrometry
Online ISSN : 2186-5116
Print ISSN : 2187-137X
ISSN-L : 2186-5116
Current issue
Displaying 1-2 of 2 articles from this issue
Original Article
  • Toshinobu Hondo, Yumi Miyake, Michisato Toyoda
    2024 Volume 13 Issue 1 Pages A0141
    Published: January 13, 2024
    Released on J-STAGE: January 13, 2024
    Advance online publication: December 28, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    J-STAGE Data Supplementary material

    A novel ionization technique named medium vacuum chemical ionization (MVCI) mass spectrometry (MS), which is a chemical ionization using oxonium (H3O+) and hydroxide (OH) formed from water, has excellent compatibility with the supercritical fluid extraction (SFE)/supercritical fluid chromatography (SFC). We have studied a method to determine free fatty acids (FFAs) in a small section of bovine liver tissue using SFE/SFC–MVCI MS analysis without further sample preparation. A series of FFA molecules interact with the C18 stationary phase, exhibiting broad chromatographic peaks when using a non-modified CO2 as the mobile phase. It can be optimized by adding a small content of methanol to the mobile phase as a modifier; however, it may dampen the ionization efficiency of MVCI since the proton affinity of methanol is slightly higher than water. We have carefully evaluated the modifier content on the ion detection and column efficiencies. The obtained result showed that an optimized performance was in the range of 1 to 2% methanol-modified CO2 mobile phase for both column efficiency and peak intensity. Higher methanol content than 2% degrades both peak intensity and column efficiency. Using optimized SFC conditions, a section of bovine liver tissue sliced for 14 µm thickness by 1 mm square, which is roughly estimated as about 3300 hepatocytes, was applied to determine 18 FFAs amounts for carbon chains of C12–C24. An amount of each tested FFA was estimated as in the range of 0.07 to 2.6 fmol per cell.

  • Kazuki Ikeda, Masatomo Takahashi, Takeshi Bamba, Yoshihiro Izumi
    2024 Volume 13 Issue 1 Pages A0143
    Published: February 20, 2024
    Released on J-STAGE: February 20, 2024
    Advance online publication: January 30, 2024
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    In metabolomic analysis, one of the most commonly used techniques to support the detection sensitivity and quantitation of mass spectrometry is combining it with liquid chromatography. Recently, we developed a method that enables comprehensive single-run measurement of hydrophilic metabolites using unified-hydrophilic interaction/anion exchange liquid chromatography/high-resolution mass spectrometry (unified-HILIC/AEX/HRMS) with a polymer-based mixed amines column (Gelpack GL-HilicAex). However, the importance of stationary phase functional groups and mobile phase conditions for the separation mechanisms and sensitive detection in unified-HILIC/AEX/HRMS is not yet fully understood. This study aimed to understand the importance of the mobile and stationary phases in unified-HILIC/AEX/HRMS. Two different alkali-resistant polymer-based amines-modified columns (Gelpack GL-HilicAex, primary, secondary, tertiary, and quaternary amine-modified polyglycerol dimethacrylate gel; Asahipak NH2P-50 2D, secondary amine-modified polyvinyl alcohol gel) and two eluents (acetonitrile and ammonium bicarbonate solution, pH 9.8) were used for comparative validation. A comparison of mobile phase conditions using both columns confirmed that the two-step separation from HILIC to AEX characteristic of unified-HILIC/AEX requires a linear gradient condition from acetonitrile to nearly 50% water and AEX with up to 40 mM bicarbonate ions. We found that when alkali-resistant hydrophilic polymer packing materials are modified with amines, unified-HILIC/AEX separation can be reproduced if at least one secondary amine associated with the amine series is present in the stationary phase. Furthermore, the difference in sensitivity in the HILIC and AEX modes owing to the different columns indicates the need for further improvements in the mobile phase composition and stationary phase.

feedback
Top