Mass Spectrometry
Online ISSN : 2186-5116
Print ISSN : 2187-137X
ISSN-L : 2186-5116
Original Article
Improving the Resolution of Kendrick Mass Defect Analysis for Polymer Ions with Fractional Base Units
Thierry Fouquet Hiroaki Sato
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2017 Volume 6 Issue 1 Pages A0055

Details
Abstract

The concept of a fractional base unit for the Kendrick mass defect (KMD) analysis of polymer ions is introduced for the first time. A fraction of the ethylene oxide (EO) repeat unit (namely EO/8) has been used for the KMD analysis of a poly(ethylene oxide) and found to amplify the variations of KMD between monoisotopic and 13C isotopes, producing an isotopically resolved KMD plot at full scale when the KMD plot computed with EO is fuzzy. The expansion of the KMD dimension using a fractional base unit has then been successfully used to unequivocally discriminate all the distributions from a blend of poly(ethylene oxide)s in a high resolution KMD plot calculated with EO/3 as base unit. Extending the concept of fractional base units to other repeat units, the visualization of the co-oligomers from a poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer has been dramatically improved using a fraction of the propylene oxide repeat unit (namely PO/3) in an oligomer and isotope resolved plot. High resolution KMD plots were eventually calculated from tandem mass spectra of poly(dimethylsiloxane) ions using a fraction of the dimethylsiloxane (DMS) unit (namely DMS/6) with clearer point alignments and a discrimination of all the product ion series, out of reach of the KMD analysis using DMS. Versatile and producing high resolution KMD plots, the introduction of fractional base units is believed to be a major step towards the implementation of the KMD analysis as a routine data mining tool for mass spectrometry in polymer chemistry.

Content from these authors
© 2017 Thierry Fouquet and Hiroaki Sato. This is an open access article distributed under the terms of Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Previous article Next article
feedback
Top