Abstract
A kinetic study on the electrodeposition of Fe–Zn–P ternary alloys onto steel in chloride solutions was carried out using a rotating disc geometry. Mass transfer through diffusion layer controlled the deposition rates of zinc onto steel, and those of iron and phosphorus were controlled by the rates of both electrochemical reaction and mass transfer. The zinc content in the Fe–Zn–P alloy increased with stirring speed and voltage. However, iron content in the Fe–Zn–P alloy decreased with speed and voltage. The phosphorus content is almost constant with respect to stirring speed in the lower voltage range but decreased slightly with stirring speed in the higher voltage range.