MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
HRTEM and EELS Studies of L10-Ordered FePt nano-Clusters on MgO Films Prepared Below 673 K
Shunsuke FukamiAkichika OhnoNobuo Tanaka
Author information
JOURNAL FREE ACCESS

2004 Volume 45 Issue 7 Pages 2012-2017

Details
Abstract

Three kinds of FePt-MgO granular films were prepared by a vacuum successive deposition of MgO, Pt, Fe and MgO on a cleaved surface of sodium chloride below 673 K. Their microstructures, electronic structures and magnetic properties were studied by high-resolution transmission electron microscopy (HRTEM), electron energy-loss spectroscopy (EELS) and measurement with a superconducting quantum interference device (SQUID) magnetometer. The TEM observations and selected area electron diffraction patterns revealed that the samples mainly consist of few nm-sized FePt clusters embedded in MgO films with L10-ordered structure and c-axis perpendicular to the film surface. Size effect on the stability of L10 phase in the FePt nano-clusters was directly observed in [MgO/Fe(0.38 nm)/Pt(0.30 nm)/MgO] and the critical size of the transition from L10 to A1 phase was estimated as around 2 nm, that can be considered as smaller than effective size for the transition from ferromagnetism to superparamagnetism. Coercivity of [MgO/Fe(1.0 nm)/Pt(0.8 nm)/MgO] was 1.2 × 105 A/m. The Fe-L2,3 white-line ratios of the present samples measured by EELS were about 4.0, independently on the incident direction of electron beam. The higher white-line ratio may be attributed to their high-spin state by a change of 3d-band structure owing to the hybridization of d-bands between Fe and Pt atoms.

Content from these authors
© 2004 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top