Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Fine Structure of Shear Bands Formed during Hot Deformation of Two Austenitic Steels
Pavel CizekFang BaiW.Mark RainforthJohn H. Beynon
Author information

2004 Volume 45 Issue 7 Pages 2157-2164


Shear bands formed during both cold and hot plastic deformation have been linked with several proposed mechanisms for the formation of ultrafine grains. The aim of the present work was to undertake a detailed investigation of the microstructural and crystallographic characteristics of the shear bands formed during hot deformation of a 22Cr-19Ni-3Mo (mass%) austenitic stainless steel and a Fe-30 mass%Ni based austenitic model alloy. These alloys were subjected to deformation in torsion and plane strain compression (PSC), respectively, at temperatures of 900°C and 950°C and strain rates of 0.7 s−1 and 10 s−1, respectively. Transmission electron microscopy and electron backscatter diffraction in conjunction with scanning electron microscopy were employed in the investigation. It has been observed that shear bands already started to form at moderate strains in a matrix of pre-existing microbands and were composed of fine, slightly elongated subgrains (fragments). These bands propagated along a similar macroscopic path and the subgrains, present within their substructure, were rotated relative to the surrounding matrix about axes approximately parallel to the sample radial and transverse directions for deformation in torsion and PSC, respectively. The subgrain boundaries were largely observed to be non-crystallographic, suggesting that the subgrains generally formed via multiple slip processes. Shear bands appeared to form through a co-operative nucleation of originally isolated subgrains that gradually interconnected with the others to form long, thin bands that subsequently thickened via the formation of new subgrains. The observed small dimensions of the subgrains present within shear bands and their large misorientations clearly indicate that these subgrains can serve as potent nucleation sites for the formation of ultrafine grain structures during both subsequent recrystallisation, as observed during the present PSC experiments, and phase transformation.

Information related to the author
© 2004 The Japan Institute of Metals and Materials
Previous article Next article