Abstract
The preparation of Ti50Cu28Ni15Sn7 metallic glass composite powders was accomplished by mechanical alloying of pure Ti, Cu, Ni, Sn and WC for 18 ks. In the ball-milled composites, initial WC particles were homogeneously dispersed in the Ti-based alloy glassy matrix. The metallic glass composite powders exhibited a large supercooled liquid region just below the crystallization temperature. The presence of WC nanoparticles did not change the glass formation ability of amorphous Ti50Cu28Ni15Sn7 powders. The as-milled Ti50Cu28Ni15Sn7 and composite powders were consolidated by vacuum hot pressing into compact discs with a diameter and thickness of 10 and 4 mm, respectively. Microstructural analysis showed that the bulk metallic glass composite contained submicron WC particles homogeneously embedded in a highly dense nanocrystalline/amorphous matrix. Incorporation of WC into consolidated composite compacts resulted in a significant increase in hardness.