MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Effects of Electron Beam Irradiation on Peeling Resistance of Laminated Sheet of High Strength Polypropylene (PP) and Bio-Adaptable Polydimethylsiloxane (PDMS)
Yoshitake NishiHidenori KawazuHiroaki TakeiKeisuke IwataHiroyuki KudohKohji Mitsubayashi
Author information
JOURNAL FREE ACCESS

2011 Volume 52 Issue 10 Pages 1943-1948

Details
Abstract

The effects of homogeneous low voltage electron beam irradiation (HLEBI) on the adhesive force (maxFp, oFp and minFp) and its energy (oEp) of peeling resistance of laminated sheets of bio-adaptable polydimethylsiloxane (PDMS) with transparency and high strength polypropylene (PP) without glue but with sterilization were investigated. Although both maxFp and oEp were 14 N·m−1 and 0.21 J·m−1 before treatment, HLEBI enhanced the maxFp and oEp up to the maximum values of 34 N·m−1 and 0.89 J·m−1 of the laminated sheets irradiated at 0.30 MGy, respectively. On the other hand, additional HLEBI reduces the maxFp, oFp, minFp and oEp of laminated sheets irradiated at more than 0.22 to 0.65 MGy, although they were apparently larger than those before treatment. In order to investigate the influence of EB irradiation on maxFp, oFp, minFp and oEp, electron spin resonance (ESR) signals related to dangling bonds were observed. When HLEBI generated dangling bonds in PP and PDMS, the dangling bonds probably served as reactive and bonding sites for each polymer at the interface. Consequently, HLEBI from 0.22 to 0.65 MGy reinforced the maxFp, oFp, minFp and oEp of the laminated sheets. Therefore, it was concluded that HLEBI was probably a useful tool for quick lamination of bio-adaptable PDMS and high strength PP.

Content from these authors
© 2011 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top