2020 Volume 61 Issue 7 Pages 1381-1386
Die-casting is widely applied to the production of automotive components because of its high productivity for manufacturing complex-shaped castings. However, since molten metal is injected into a cavity at high speed and it solidified rapidly under high pressure in this process, many casting defects are liable to occur. Although the most frequent internal defect is gas entrapment, shrinkage porosity also forms in the thick-wall portions of die castings. In order to avoid shrinkage porosity, there is a need to feed adequate molten metal to compensate the shrinkage volume during solidification. Therefore, it is desirable to better understand the feeding behaviors of molten metal under high pressure and rapid cooling conditions in the die casting process. In this study, the permeabilities of Al–Si alloys during the solidification process under die-casting conditions were determined by measuring the pressure transmission of the molten metal from the plunger to the mold cavity so as to obtain the feeding resistance coefficients. The formation of shrinkage porosities in die-castings was proven to be predictable by numerical simulation using the obtained feeding resistance coefficients.
This Paper was Originally Published in Japanese in J. JFS 91 (2019) 529–533.