MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Special Issue on Recent Research and Development in the Processing, Microstructure, and Properties of Titanium and Its Alloys
Concept and Fabrication of Beta-Type Titanium Alloy Rod with Parts Possessing Different Young’s Moduli for Spinal Fixation
Masaaki NakaiKengo NaritaKoichi KobayashiKeisuke SasagawaMitsuo NiinomiKazuhiro Hasegawa
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2023 Volume 64 Issue 1 Pages 147-154

Details
Abstract

This paper proposes the concept and fabrication process of titanium alloy rods for spinal fixation. A part of rod for fixing the lower side of the lumbar vertebra is strengthened, while the other part for fixing the upper side has low stiffness. The results obtained by finite element analysis reveal that a rod with partially lowered Young’s modulus has higher flexibility and fixity compared with a rod possessing high Young’s modulus throughout. Using Ti–29Nb–13Ta–4.6Zr alloys with oxygen contents of 0.2 and 0.4% as the model alloys, rods with partially different Young’s moduli were fabricated by aging treatment at 723 K, followed by partial heating up to above the β-transus temperature and quenching by high-frequency induction heating (IH-treatment). A single β-phase, which has low Young’s modulus, is obtained by IH-treatment and has lower strength. With regard to the as-aged parts, the precipitated condition of the α-phase can be changed by varying the aging time. The obtained Young’s modulus and strength reflect this change. Near the boundary between the as-aged and IH-treated parts, the hardness is gradually changed, and it is possible to gradually soften the material from the as-aged part to the IH-treated part.

Fullsize Image
Content from these authors
© 2022 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top