MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Engineering Materials and Their Applications
Development of Rotor Core with High Magnetic Flux by Partial Non-Magnetic Improvement of Silicon Steel
Norihiko HamadaAki WataraiHironari MitaraiKatsunari OikawaSatoshi Sugimoto
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2023 Volume 64 Issue 5 Pages 1058-1064

Details
Abstract

Flux leakage in the rotor core bridges is a problem specific to interior permanent magnet motors and has been unsolved till date. It is widely known that if the bridges are partially non-magnetically improved with low magnetic polarization, the leakage flux will be smaller, and the rotor will have a higher magnetic flux. We proposed that the portion of the silicon steel sheets that becomes the bridge after pressing can be non-magnetized and laminated to fabricate the rotor core. Partially non-magnetic material with a polarization of almost zero was obtained by melting and mixing Ni–Cr alloy powder with the silicon steel sheets. This non-magnetic improvement treatment was applied to the bridge in the rotor core sheet, in which the non-magnetic area width was 1.45 mm, and the prototype rotor core was fabricated by laminating 60 rotor core sheets. Upon measurement, the rotor core showed approximately 35% higher magnetic flux than a conventional one, with the actual value nearly identical to that obtained from the magnetic field analysis.

Partially non-magnetic material with a polarization of almost zero was obtained by melting and mixing Ni–Cr alloy powder with the silicon steel sheets. This non-magnetic improvement treatment was applied to the bridge in the rotor core sheet, in which the non-magnetic area width was 1.45 mm, and the prototype rotor core was fabricated by laminating 60 rotor core sheets. Upon measurement, the rotor core showed approximately 35% higher magnetic flux than a conventional one, with the actual value nearly identical to that obtained from the magnetic field analysis. Fullsize Image
Content from these authors
© 2023 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top