MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678
Review
Giant Negative Thermal Expansion Materials: Progress of Research and Future Prospects
Koshi Takenaka
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2024 Volume 65 Issue 3 Pages 243-252

Details
Abstract

Thermal expansion, by which a material’s volume increases when heated, is a universal phenomenon deriving from the thermal vibration of the atoms that constitute solids. Since the discovery of low thermal expansion in Invar alloys at the end of the 19th century, the “abnormality” of thermal expansion has given birth to new sciences and technologies. This article describes studies of thermal expansion anomalies from low thermal expansion of Invar alloys to the giant negative thermal expansion (giant NTE) materials recently discovered. Moreover, prospects for future research are presented. One turning point is the large isotropic NTE of ZrW2O8 discovered in 1996. Starting with manganese nitride in 2005, various materials have been found to have negative linear expansion coefficients that are many times larger than those of conventional NTE materials, although some operating-temperature constraints exist. These achievements have overturned the conventional wisdom which holds that negative coefficients of linear expansion do not engender large values. Additionally, the achievements established the concept of “giant” or “colossal” NTE. This article emphasizes recent important findings of enhanced NTE caused by material microstructural effects that are peculiar to ceramic bodies, and “hybrid” NTE by which multiple mechanisms work simultaneously. Additionally, this article introduces an attempt to produce fine particles of NTE material and use them as a thermal expansion compensator, especially for thermal-expansion control of resin.

 

This Paper was Originally Published in J. Jpn. Soc. Powder Powder Metallurgy 70 (2023) 361–370.

Fig. 1 Progress of research in thermal-expansion anomaly and low or negative thermal expansion. Fullsize Image
Content from these authors
© 2024 Japan Society of Powder and Powder Metallurgy
Next article
feedback
Top