MATERIALS TRANSACTIONS
Online ISSN : 1347-5320
Print ISSN : 1345-9678
ISSN-L : 1345-9678

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Deep Learning in Classifying Structures for Crystal Systems of Pure Metals
Ye Li
著者情報
ジャーナル フリー 早期公開

論文ID: MT-M2022214

この記事には本公開記事があります。
詳細
抄録

We used two deep learning methods, convolutional neural networks (CNN) and deep neural networks (DNN), to classify three common metal crystal structures (FCC, BCC, and HCP). The training, validation, and test datasets were created by Atomsk and Python scripts, and the data structure was transformed to meet the input requirements of CNN and DNN. To fully train and test CNN and DNN, we constructed four crystal structure datasets using random parameters. The results show that the accuracy of CNN and DNN algorithms on the test set is 100%, indicating that deep learning methods are effective for metal crystal structure classification. Compared with DNN, CNN has fewer parameters, faster training, and faster classification. It lays the foundation for further studying alloy structure detection and phase transition.

Fullsize Image
著者関連情報
© 2023 The Japan Institute of Metals and Materials
feedback
Top