Article ID: MT-MA2024006
The current trend in research on the physical properties of high-entropy alloys has been progressively increasing as there are many unknown possibilities for developing high-entropy alloys for advanced applications. This study investigated the effect of microstructures of rolled high-entropy alloy from the viewpoint of crystal orientation and dislocation density distribution to reproduce mechanical anisotropy using crystal plasticity finite element simulation. The crystal orientation and the geometrically necessary dislocation density of the rolled material were quantitatively estimated from experimental data of electron backscatter diffraction. Microstructural observation showed that particular textures were preferably oriented like in typical FCC metals. Even though the simulation results where only the preferred crystal orientation was considered did not show the expected mechanical anisotropy as in the experiment, the computational model with the dislocation density distribution and the preferred orientation showed the same tendency as the experiment.