医用画像情報学会雑誌
Online ISSN : 1880-4977
Print ISSN : 0910-1543
ISSN-L : 0910-1543
招待解説論文
肺結節自動検出処理におけるディープラーニング応用
寺本 篤司
著者情報
ジャーナル フリー

2017 年 34 巻 2 号 p. 54-56

詳細
抄録

Our research group develops an automated method of lung nodule detection in PET/CT images by means of deep learning technique. This review article describes the outline of our study as one application of the deep learning for medical image processing. In the proposed method, initial nodule candidates are detected by nodule enhancement and thresholding techniques. Regarding to the false positive reduction method, both conventional shape / metabolic features and deep convolutional neural network are employed. As a result of performance evaluation, proposed method had the better false positive reduction performance than that of conventional method.

著者関連情報
© 2017 医用画像情報学会
前の記事 次の記事
feedback
Top