人工知能学会全国大会論文集
Online ISSN : 2758-7347
21st (2007)
セッションID: 1G2-5
会議情報

WebSim: A Web-based Semantic Similarity Measure
*ボッレーガラ ダヌシカ松尾 豊石塚 満
著者情報
会議録・要旨集 フリー

詳細
抄録

Semantic similarity measures are important for numerous tasks innatural language processing such as word sense disambiguation,automatic synonym extraction, language modelling and document clustering. We propose a method to measure semanticsimilarity between two words using information availableon the Web. We extract page counts and snippets for the AND queryof the two words from a Web search engine. We define numerous similarity scoresbased on page counts and lexico-syntactic patterns. These similarity scoresare integrated using support vector machines to form a robust semanticsimilarity measure. Proposed method outperforms all existing Web-basedsemantic similarity measures on Miller-Charles benchmark dataset achievinga high correlation coefficient of 0.834 with human ratings.

著者関連情報
© 2007 The Japanese Society for Artificial Intelligence
前の記事 次の記事
feedback
Top