主催: 一般社団法人 人工知能学会
会議名: 2019年度人工知能学会全国大会(第33回)
回次: 33
開催地: 新潟県新潟市 朱鷺メッセ
開催日: 2019/06/04 - 2019/06/07
読者が自分自身でニュースの信憑性を評価できるためには、解釈性はフェイクニュース検出器の重要な要素である。GranikとMesyurによって提案されたナイーブベイズに基づくフェイクニュース検出モデルを実装し、LIARデータセットを使用して、再現率、ストップワードの影響、および解釈性の観点から評価した。 再現率は不均衡なデータの影響を受け、ストップワードを排除しても精度は向上せず、わずかに悪化した。いくつかの確率の高い単語は、フェイクニュースの要因として解釈可能であるが、フェイクニュースの手掛かりとしては、より長いフレーズを考慮する方がよいことが明らかになった。