主催: 一般社団法人 人工知能学会
会議名: 第34回全国大会(2020)
回次: 34
開催地: Online
開催日: 2020/06/09 - 2020/06/12
ロボットが効率的にタスクを達成するため,エキスパートによるデモンストレーションから得られた軌道を強化学習によって補正する手法が提案されている. しかし,従来手法のエキスパートの軌道は一つを想定しており,複雑なタスクではエキスパートが複数のポリシーを利用する場合が考えられる. 本稿では,エキスパートのデモンストレーションから複数のエキスパートポリシーを学習し, 強化学習によって補正を行うResidual Reinforcement Learningを提案する. 実験では物体の整列タスクにより,複数のエキスパートポリシーを活用することで,エキスパートによる軌道のみを用いた場合よりも高精度な整列が可能となることを示す.