人工知能学会全国大会論文集
Online ISSN : 2758-7347
第34回 (2020)
セッションID: 4K3-GS-3-05
会議情報

モチーフ発見と文法的推論に基づく繰り返し作業時系列のセグメンテーション方式
*寺田 昌弘井上 真生島田 建南 直輝今村 誠
著者情報
会議録・要旨集 フリー

詳細
抄録

加速度,ジャイロセンサ,モーションキャプチャーなどから取得した人の動作データを自動解析するためには,動作を構成する基本的な行為を切り出すセグメンテーション処理が重要になる.多くの従来方式では,「立ち上がる」,「歩く」,「座る」といった基本行為を,テンプレートを用いて抽出していたが,本稿では,工場の作業のように繰り返し同じ行為を反復する動作を対象として,基本行為を自動抽出し,さらに,基本行為の並びとして構成される一連の動作(サイクルと呼ぶ)を発見するセグメンテーション方式を提案する.提案方式は,反復出現する類似部分列を発見するモチーフ発見処理と,モチーフを記号化しその並びのパターンをサイクルとして抽出する文法推論処理からなる.提案方式は,従来のサイクル抽出方式と比較して,「繰り返す数が異なる基本行為の並びを扱えるので標準的な作業時間をパラメータとして必要としない」と,「長さの異なる複数のモチーフの抽出により,サイクルだけでなくサイクルを構成する基本行為も抽出できる」点に新規性がある.そして,梱包作業とネジ締め作業を対象として,提案方式の基本行為とサイクルの抽出率を評価した.

著者関連情報
© 2020 一般社団法人 人工知能学会
前の記事 次の記事
feedback
Top