主催: 一般社団法人 人工知能学会
会議名: 2023年度人工知能学会全国大会(第37回)
回次: 37
開催地: 熊本城ホール+オンライン
開催日: 2023/06/06 - 2023/06/09
深層学習モデルとデータセットの増大により分散並列学習が必要になっている。データ並列化は各GPUがモデルを冗長に持ち、バッチを分散させる最も容易に実装できる分散学習手法である。しかし、GPU数が増えるとバッチサイズもそれに比例して増大しSGDのもつ陰的正則化効果が失われることで汎化性能が低下する。本研究では、勾配のノルムによる正則化を行うことでこのラージバッチ問題を緩和することを目指す。