日本リモートセンシング学会誌
Online ISSN : 1883-1184
Print ISSN : 0289-7911
ISSN-L : 0289-7911
論文
深層学習によるPi-SAR2偏波観測データの土地被覆分類
有馬 悠也
著者情報
ジャーナル フリー

2021 年 41 巻 3 号 p. 386-398

詳細
抄録

The National Institute of Information and Communications Technology (NICT) has been observing the ground surface with the Pi-SAR2 airborne synthetic aperture radar, and has been studying methods to utilize the observation data effectively. Deep learning, a type of machine learning, is a method that shows high performance in the field of image classification and recognition, and that has also been actively studied in the field of remote sensing. In this paper, we report the results and verify the accuracy of a deep learning approach to land cover classification for high-resolution and full-polarimetric data observed by the Pi-SAR2.

著者関連情報
© 2021 社団法人 日本リモートセンシング学会
前の記事 次の記事
feedback
Top