計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
制御
初期化の不要な反復学習とその連続時間システム同定への応用
丸田 一郎杉江 俊治
著者情報
ジャーナル フリー

2009 年 45 巻 3 号 p. 144-152

詳細
抄録

This paper proposes a new approach for the projection type iterative learning control (ILC) with an application to identification of continuous-time systems. First, this paper gives a framework to perform ILC without resetting the initial condition at each iteration, which can be achieved by introducing the dynamics into the system representation in the finite-dimensional signal subspace. Second, it is shown how to identify the system parameters based on the proposed ILC. The method does not require us to wait for the equilibrium state patiently or reset the system forcibly in the identification process. Furthermore, a class of gain decreasing filters are introduced. Combination of these results gives us the estimates which converge to the true system parameters against measurement noise. A numerical example is given to demonstrate these properties of the proposed method.

著者関連情報
© 2009 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top