計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
強化学習における線形計画法を用いた効率的解法
泉田 啓天野 恒佑
著者情報
ジャーナル フリー

2016 年 52 巻 10 号 p. 566-572

詳細
抄録
Model-based reinforcement learning includes two steps, estimation of a plant and planning. Planning is formulated as dynamic programming (DP) problem, which is solved by a DP method. This DP problem has an equivalent linear programming (LP) problem that can be solved by LP method, but it is generally less efficient than typical DP method. However, numerical examples show linear programming is more efficient than the typical DP method in problems whose self-transition probabilities are large. The reason is clarified by geometrical discussion of each solution of method approaches to optimal solution.
著者関連情報
© 2016 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top