計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
ポテンシャル法と深層強化学習を用いたクアッドロータの自律的障害物回避
白石 大介市原 裕之
著者情報
ジャーナル フリー

2020 年 56 巻 3 号 p. 156-166

詳細
抄録

In motion planning of robots such as quadrotors, potential field methods are useful so that robots avoid obstacles. The artificial potential field method, which is one of the potential field ones, enables us to plan actions. However, the quadrotors sometimes fail to avoid the obstacles because the artificial potential field method does not take into consideration the inertia effect arising from the velocity of the quadrotors. To overcome the inertia effect, we give an idea of applying deep reinforcement learning to the artificial potential field method to determine an additional reference signal to the quadrotor. Thanks to this reference signal, the quadrotor improves the performance in trial and error to avoid the obstacles. Then the robot achieves an optimal action from the velocity of the robot and the position of the obstacles.

著者関連情報
© 2020 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top