計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
安定行列の符号構造に関する一考察
宮道 壽一
著者情報
ジャーナル フリー

1988 年 24 巻 2 号 p. 149-155

詳細
抄録
This paper considers the stability conditions of sign matrices and the minimal structures of stable matrices with diagonal sign patterns (0, -, …, -), (0, 0, -, …, -) and (0, 0, 0, -, …, -). Sign matrix (sign pattern (+, -, 0) of each element of a matrix) represents the interconnection structure of a system and so this paper deals with the structural stability of linear systems. Stability of a matrix A is closely related to the digraph associated with A and the diagonal sign pattern of A. Stable matrices with minimal number of nonzero elements are fundamental for stability consideration of sign matrices. Digraphs associated with sign matrices are assumed to be strongly connected. If associated digraph is a simple loop, the matrix can be stable iff at least n-1 diagonal elements are negative. For (0, -, …, -) type n×n matrices it is found minimal structure is unique and is a simple loop with n edges. For (0, 0, -, …, -) and (0, 0, 0, -, …, -) type matrices there are many minimal structures that contain n+1 edges. Some results of computer classification and stability check done for sign matrices with diagonal sign patterns (0, 0, 0, -), (0, -, -, -), (0, 0, -, -) and (0, 0, 0, -, -) are also included in this paper.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top