SOLA
Online ISSN : 1349-6476
ISSN-L : 1349-6476
Article
Budget Analyses of Precipitation and Energetics Associated with Torrential Rainfall Events over Zhejiang, Fujian and Jiangxi
Xinyi YangXiaofan Li
著者情報
ジャーナル フリー
電子付録

2018 年 14 巻 p. 185-191

詳細
抄録

Four cases of heavy rainfall over Zhejiang, Fujian and Jiangxi during mid-June are simulated by the two-dimensional (2D) cloud-resolving model using the large-scale forcing data derived from the 6-hourly ERA-Interim data set. The simulations are used to conduct budget analysis of precipitation and energetics associated with the development of torrential rainfall. Surface rainfall is dominated by water vapor convergence (QWVF) in water vapor related surface rainfall budget and heat divergence (SHF) in thermally related surface rain budget. The high linear correlation coefficients between water vapor related precipitation efficiency (PEWV) and heat related precipitation efficiency (PEH) stem from the statistical similarities between QWVF and SHF. The diurnal variations of surface rainfall correspond to the upward motions. An energy conversion efficiency is defined as the ratio of perturbation kinetic-energy to convective available potential energy to measure how efficiently the secondary circulations develop under the consumption of the convective available potential energy. The diurnal variations of energy conversion efficiency generally are in phase with the rainfall, indicating importance of interaction between dynamics and water vapor in build-up of rainfall peaks.

著者関連情報
© The Author(s) 2018. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
前の記事 次の記事
feedback
Top