SOLA
Online ISSN : 1349-6476
ISSN-L : 1349-6476
Article
Observation System Simulation Experiments of Water Vapor Profiles Observed by Raman Lidar Using LETKF System
Satoru YoshidaSho YokotaHiromu SekoTetsu SakaiTomohiro Nagai
著者情報
ジャーナル フリー

2020 年 16 巻 p. 43-50

詳細
抄録

We conducted observation system simulation experiments (OSSE) to investigate the effects of water vapor vertical profiles observed by Raman lidar (RL) on forecasts of heavy precipitation in Hiroshima, Japan, on August 19, 2014 using a local ensemble transform Kalman filter. We employed a simulation result similar to reality as nature-run (NR) and performed two OSSEs. In the first experiment (DaQv), conventional observation data and vertical profiles of water vapor mixing ratio in air (qv) estimated from NR were assimilated. In the second experiment (CNTL), only conventional observation data were assimilated. In DaQv, we assumed that the RL was in the low-level inflow that supplied water vapor to the heavy precipitation in Hiroshima. Assimilating qv for several hours increased qv around the RL observation station, especially at low level. The regions modified by the assimilation of qv moved to Hiroshima by low-level inflow, resulting in 9-hour precipitation being approximately 28% greater than that of CNTL, and was thus closer to that of the NR. The OSSEs suggest that water vapor RL observations on the windward side of the heavy precipitation are a useful approach for improving precipitation forecasts.

著者関連情報
© The Author(s) 2020. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
前の記事 次の記事
feedback
Top