2024 年 61 巻 2 号 p. 76-81
Using a horizontal batch dry bead mill newly developed by our company, talc raw material was ground in air, and its grinding performance and mechanochemical effect on the sample were evaluated from various perspectives. First, the average diameter of the ground product as a grinding performance decreases with the increase in grinding time or power source unit, reaching the submicron size. In addition, when mill operation is continued, talc changes fine particle aggregation and crystal structure change due to mechanochemical effects, and the phenomenon of detachment of the (OH) group around Mg in the crystals becomes remarkable. The flowability of the ground product is inhibited by the withdrawal of (OH) from the talc crystal, but this flowability is restored when it is dried. When the power source unit in the grinding approaches 3 kWh/kg, it asymptotes to the maximum value of 9% in the weight reduction percentage.